
 ChapTer 12: file sysTems
by Volker Herminghaus

Since you are reading a book about volume management for highly available UNIX systems
in data centers we would like to assume that you have some basic understanding of what
a file system is used for. We will spare both your time and ours describing the basic goals
of a file system. But there are some essential differences between the various types of file
systems that are very useful to point out. So let us begin with a short overview of the vari-
ous file system types that have developed over time, and how their strengths increased. Yes,
increased, not changed. As a general rule, file systems have indeed gotten a lot better over
time without losing any important features relative to older implementations. Different
from other aspects of computer technology one can safely say that so far, file system devel-
opment has been a one-way road towards improvement, not heavily traded-off bloatware
development as so many other parts of operating systems. At least if we ignore the non-
sequential access methods of some older file systems. But those can be easily emulated on
a higher level, and their omission from file system code probably improved performance
rather than diminishing it.

 12.1 block based file systems
Most common file systems are based on allocating single individual blocks from the
underlying partition or volume to store user data as well as file system metadata. There is
always some higher-level data (the metadata mentioned above) that bundles these blocks
together to the notion of a sequential file and stores meta information about the file and
the total file system. This metadata has been stored in many different forms, including very
arcane ones, over the course of time. As one of the most bizarre ones known to the current

Another Kind of File System ;)

429
V. Herminghaus and A. Sriba, Storage Management in Data Centers,

DOI: 10.1007/978-3-540-85023-6_12, © Springer-Verlag Berlin Heidelberg 2009

430

File Systems

instance of humanity we would like to point out the "file system" of the Commodore 64
floppy disk (really!).

Just for Fun: Commodore 64's Rudimentary File 12.1.1
Access

It was organized into a single directory (of limited length). The directory was stored in a
fixed location. Each directory entry had a name and a starting block for the file. If a file was
deleted, the first character of the name was overwritten by a special character to indicate
the file's "deleted" state. There was no centralized information about the blocks that a file
would consist of. Instead, the first block was pointed to by the directory entry, and the
consecutive blocks were pointed to by the last byte of the previous block. In effect, this
resulted in a linked list of blocks that could only be read sequentially. Even when a process
(or should I say "the program", as this was a single-tasking system) wanted to access the
end of the file the system still had to read through all of the file's blocks in order to find
its way to the end – after all, it had to read the whole linked list!

B
lo

ck
 3

B
lo

ck
 6

(la

st
)

B
lo

ck
 2

B
lo

ck
 5

B
lo

ck
 1

B
lo

ck
 4

B
lo

ck
 0

Directory

The extremely basic Commodore 64 file system mixed meta Figure 12-1:
data (the linked list of block numbers) with user data. Seeking
required reading all blocks up to the end point. This was because
mass storage can only be read in blocks rather than directly
addressed, and in order to retrieve the pointer to the next block,
the whole data block had to be transferred.

 12.1.2 FAT – Not a Big Improvement

A little better, although not much, was – and still is – the file system used by MS-DOS and,
later, Windows "operating systems". It is called FAT (for File Allocation Table) file system
and has a central root directory that allows for subdirectories. Files are still deleted by
invalidating the first character of the file name. And the starting block is still stored in
the file's directory entry. But one of the very few things that are better in this file system

431

Block Based File Systems

than in the Commodore 64's is that there now is a central location that holds a complete
linked list of blocks for a file (the file allocation table). The FAT data structure works basi-
cally as an array of 12, 16, or 32-bit values in which each index is identical to the cor-
responding data block number in the data area of the file system. The first array element
in the FAT corresponds to the first data block in the data portion of the file system, the
one-hundredth element corresponds to the one-hundredth data block, etc. The values in
the array are either NULL (in which case no further block follows) or the number of the
next block in the file. In other words, there is still a linked list of blocks per file, but the
list has been moved outside of the data portion of the file system, and into a separate data
structure, which can be read independently without reading all of the file. Seeking in a file
is therefore not awfully slow but merely pretty slow. Of course, the "great visionary" Bill
Gates has provided enough lock-ins to make the FAT file system woefully inadequate for
serious computing today and yesterday. For instance, the number of addressable blocks is
limited and therefore the only way to scale the file system size up is to increase the size of
the allocated units (called "clusters"). This is very wasteful because even for tiny files the
file system must allocate at least one allocation unit. While most serious file systems have
minimum allocation units of 1 KB, FAT file systems of a total size of merely 2 GB already
require at least 32 KB allocation units. Apart from this, traversing linked lists really is not
fast unless you are handling very few objects, i.e. blocks. This is not the case today, and
neither FAT's feature set nor its performance can in any way compete with even the most
primitive versions of e.g. UNIX file systems.

B
lo

ck
 3

B
lo

ck
 6

(la

st
)

B
lo

ck
 2

B
lo

ck
 5

B
lo

ck
 1

B
lo

ck
 4

B
lo

ck
 0

Directory

File Allocation Table (FAT)

FAT file system moves the linkage information into a separate Figure 12-2:
data structure, away from the user data, so it can be processed
more quickly – somewhat.

Apart from its wastefulness FAT is extremely limited when it comes to file naming. FAT
file names are inherently limited to an 8.3 pattern, and the extension to that naming pat-
tern is incompatible with many file sharing protocols or shared media, and implemented in
a very inefficient, hackish way. Ownership, group and other permissions are not supported,
access times are not recorded, and support for multiple names referencing the same data
is limited at best. In short, it is a very ancient, crufty file system that has survived solely

432

File Systems

because the majority of its users don't know better and are used to malfunctioning operat-
ing systems, so basically nobody ever bothered to fix it.

12.1.3	 UFS – Finally Something Decent

What is known these days as UFS, or UNIX File System, is actually not the original AT&T
System V UFS but the much more modern Berkeley FFS (Fast File System). The original UFS
used a "super block" at a fixed location for finding the rest of the metadata and for main-
taining file system global values such as clean/dirty state, size and degree to which the file
system is full. It used a linked list for managing free blocks, and it invented the notion of
an "inode", or information node, that holds all metadata pertaining to the file. The inode
contained user and group ID of the file's owner, the numbers of the first ten blocks of the
file, read and access time stamps as well as a time stamp for the last change to the inode,
permission information, size, and a whole lot more. If the file was longer than the portion
that can be addressed by the block numbers in the inode, then the next block number in
the inode would not be the eleventh block of the file, but it would contain a so-called
"indirect block", i.e. a block full of block numbers of file data blocks. Thus a file could be
enlarged by a lot of blocks with just one extra block of metadata (the block containing
the additional data block numbers, the indirect block). If that did still not suffice, then the
next block number in the inode would be a double-indirect block containing the addresses
of indirect blocks which in turn contained data block numbers. Number thirteen would be
a triple-indirect block, and by then all conceivable storage devices of those times would
have long been exhausted. Depending on the blocksize, a file could be as large as 2GB (that
was at the time of 5 MB disk drives!). Remember: when looking for vision, first talk to guys
like Brian Kernighan, Rob Pike & Dennis Ritchie, the inventors of the original UNIX system
and the C language and much more. And always talk to Bill Gates last – just for having a
good laugh at the end!

The Berkeley FFS, which has been commonly adopted by the UNIX crowd as the stan-
dard file system, has replaced the linked list of the original UFS with a bitmap representing
the free blocks, along with some efficient algorithms that work on those bitmaps trying
to find contiguous stretches of storage into which to store the data. It has also introduces
the concept of "cylinder groups", effectively distributing file data and I/O across all of the
volume address space. Basically, a cylinder group is a number of contiguous disk cylinders
consisting of a superblock copy, block allocation bitmap, inode table, and data blocks. The
metadata is centered in the data blocks to allow for better proximity between metadata
and user data.

433

Block Based File Systems

D
ou

bl
e

in
di

re
ct

bl

oc
k

in
di

re
ct

bl

oc
k

B
lo

ck
 1

0

B
lo

ck
 9

B
lo

ck
 8

B
lo

ck
 7

B
lo

ck
 6

B
lo

ck
 5

B
lo

ck
 4

B
lo

ck
 3

B
lo

ck
 2

B
lo

ck
 1

B
lo

ck
 0

Directory

File's inode
Information about type, user and group

ownership, permissions, timestamps, size, …

–

In
di

re
ct

bl

oc
k

4

In
di

re
ct

bl

oc
k

3

In
di

re
ct

bl

oc
k

2

In
di

re
ct

bl

oc
k

1

More indirect blocksMore data blocks

B
lo

ck
 1

4

B
lo

ck
 1

3

B
lo

ck
 1

2

B
lo

ck
 1

1

B
lo

ck
 1

38

Various meta info

Block allocation }

Yet more data blocks

B
lo

ck
 1

42

B
lo

ck
 1

41

B
lo

ck
 1

40

B
lo

ck
 1

39

…

UFS uses inodes to concentrate meta information as well as Figure 12-3:
block allocation information into one place. Linked lists pointing
to data blocks are superseded by direct, indirect, double indirect
and triple indirect block lists.

Allocation of space for new files is done by first selecting a cylinder group (of which
there are usually many – newfs tells you the number of cylinder groups and the location of
the superblock copies when you create a UFS file system), and then allocating blocks in a
preferably contiguous fashion from that cylinder group. Multi-user I/O will therefore typi-
cally be distributed across several cylinder groups; a similar effect to striping on a volume
level. This makes sure that the disk or volume is used in a balanced way, especially with
respect to the usage of the (fixed) inodes for the data around the inode table.

Berkeley FFS is a pretty good file system, but it is still far from a really good one. For
one thing, block-based addressing requires a relatively large amount of metadata – one
block number per block. The fixed locations and sizes of UFS's metadata make it wasteful
and inflexible in extreme cases. File systems with very few very large files are a bad case
because a large number of inodes is reserved in vain. Likewise, the opposite case is bad, too.
File systems with lots of small files will eventually run out of inodes even if there is plenty
of space still left in the data portion of the file system. And lastly, advanced features like
point-in-time-copies, shrinking of file systems, or reorganizing the files ("defragmenting")
is not efficiently possible.

All of those advanced features, and many more advantages, can be done easily when

434

File Systems

one switches from block-addressing to extent-addressing. This is what the developers of
VxFS have done. It is by no means easy to write an extent-based file system, which is why
there are so few implementations. But when one has managed to get beyond the complex-
ity of the problem, there is a whole world of new capabilities that await the user of that
file system (if you need to know what extents are, refer to their explanation in the Basics
chapter, page 2). Welcome to VxFS!

12.2	 Extent Based File Systems

12.2.1	 VxFS

Veritas File System, or VxFS in short, is a file system that uses extent-based rather than
block-based allocation. What is an extent in this context? An extent in the context of VxFS
is a contiguous stretch of any "power of 2" number of blocks/sectors/KBs: 1, 2, 4, 8, 16, 32,
64, 128, ... up to multi-gigabyte length extents of which only a few will cover almost all
of even a very large volume. Now how is this extent-based space allocated? As we should
be expecting from the guys at Veritas by now, it is allocated in a very clever way: The first
extent that is allocated to as file is just large enough to hold the initial batch of data, let's
say 64 KB, i.e. a 128-block extent. This extent (which, as usual, consists of a starting block
number and a length) is written into the inode just like UFS writes the first allocated block
into the first direct block pointer in the inode. But while UFS has used up one slot for a
single 8 KB block, VxFS has used it for 64 KB - a fourth of the metadata (an extent consists
of two values – starting block and length – while a block number only consists of one). Now
when the file is grown beyond the 64 KB previously allocated, the next extent is allocated.
This extent will not be 64 KB, but rather it will be twice that amount: 128 KB, or 256
blocks. The rationale behind this is that when a file is growing it may grow very large. We
do not know how large, but the more it grows, the higher the probability that it will grow
even larger. So every time the file size exceeds its allocation, the file size basically doubles
because the size of the new extent is equal to twice the current size of the file (minus the
initial extent size, to be precise). And with every new extent the degree of contiguousness
increases, and the amount of metadata per block rapidly decreases.

While this may sound extremely wasteful, it is really not wasteful at all. Just wait for
another one or two pages...

435

Extent Based File Systems

B
lo

ck
 7

B
lo

ck
 6

B
lo

ck
 5

B
lo

ck
 4

B
lo

ck
 3

B
lo

ck
 2

B
lo

ck
 1

B
lo

ck
 0

Directory

File's inode
Information about type, user and group

ownership, permissions, timestamps, size, …

B
lo

ck
 1

27

Various meta info

Extent allocation }

Extent consisting of 2n consecutive blocks

VxFS also uses inodes, but instead of pointing to individual Figure 12-4:
blocks, it points to extents, which can be multi-megabytes in
length. indirect and double indirect blocks are used, too. but are
only seldom needed, because most file use far less than the ten
extents that can be stored in the VxFS inode directly (VxFS allo-
cation vastly prefers contiguousness over scattered allocation).
An extent is a 32-bit block number plus a 16-bit block count,
with the blocks in a file system being tunable to between 1 KB
and 8 KB in length.

How Extents are Found
Extents are held in a free extent list, which is sorted by length and which can therefore be
very rapidly searched and manipulated. In fact, you can look at the cree extent list of any
VxFS file system by calling the file system administration tool, fsadm, with the appropriate
options. The option "-E" lists extent information. Here is an example of what a freshly cre-
ated and slightly filled 6 GB volume lists as the extent report:

df -h -F vxfs
Filesystem size used avail capacity Mounted on
/dev/vx/dsk/adg/avol 6.0G 106M 5.5G 2% /vxfs_mnt

Note that the net capacity of the volume is equal to the volume size: the full 6 GB
are usable! In the case of UFS, a lot of the volume's capacity is filled with fixed-location
 metadata like inode tables, bitmaps, super block backups, and other cylinder group info.

fsadm -E /vxfs_mnt
Extent Fragmentation Report
 Total Average Average Total
 Files File Blks # Extents Free Blks

436

File Systems

 503 177 1 6183245
 blocks used for indirects: 0
 % Free blocks in extents smaller than 64 blks: 0.01
 % Free blocks in extents smaller than 8 blks: 0.00
 % blks allocated to extents 64 blks or larger: 91.01
 Free Extents By Size
 1: 21 2: 28 4: 16
 8: 26 16: 3 32: 0
 64: 1 128: 1 256: 1
 512: 1 1024: 1 2048: 0
 4096: 1 8192: 0 16384: 1
 32768: 0 65536: 0 131072: 1
 262144: 1 524288: 1 1048576: 1
 2097152: 2 4194304: 0 8388608: 0
 16777216: 0 33554432: 0 67108864: 0
 134217728: 0 268435456: 0 536870912: 0
1073741824: 0 2147483648: 0

The pyramid-shaped columns of number above are actually the whole free space infor-
mation for the file system: you see that there are 21 free extents of size 1, 28 of size 2,
16 of size 4, and so on, until finally most of the empty volume space is contained in 2 free
extents of size 2097152. The maximum extent size is 2 TB!

Efficiency of VxFS Allocation
You may wonder what happens in the following scenario: A file keeps growing and

therefore larger and larger extents are being appended to it. But then, just a small portion
is written into the most recently allocated (and therefor largest) extent, and then the file is
closed and stops growing. What happens to the remaining, empty space in that last extent?
There are several possible scenarios that one may think of:

1.	 The remaining space is simply wasted and remains allocated "just in case" it will
eventually be grown again.

This would be a very poor design, as we can never guarantee that the file will actually
grow. If it does not, the space would be permanently wasted. Because we cannot guarantee
eventual growth of the file, there would have to be some kind of timeout mechanism that
would free the extent after some time, or when space is urgently needed. But it would be
very hard to do this right, and it may never be done right.

2.	 The used part of the extent is re-allocated to a new, smaller extent and its contents
are copied to there. After the copying process has finished, the long extent is freed.

That would certainly be possible, but it has a number of disadvantages. The first one is:
do we really want to copy half a terabyte, just because we allocated another terabyte and
only filled half of it? This takes several hours of permanent read/write I/O! The second one
is: if there are so few extents free in a VxFS file system (see the example above), and we
fill them ideally, when and how are we ever to get new, smaller extents? This is answered
by the third possibility, which is how VxFS actually goes about in the case sketched above

3.	 The remaining part of the large extent is cut into smaller extents, and those are added
to the free list.

437

Extent Based File Systems

Once you understand VxFS's allocation its elegance becomes obvious. Let's say we have
allocated a 2 GB extent but only used 14 MB of it when we close the file. VxFS now chunks
the 2 GB extent newly by splitting it into new extents of appropriate sizes:

The part of the extent that was actually used (fourteen MB) is split into an eight
MB and a four MB and a two MB extent. The data is not moved, instead the 2 GB extent
is simply split into several smaller extents, all being contiguous inside the original 2 GB
extent. Eight plus four plus two is fourteen, so all the data can be held in just these three
extents. Now there is 2 GB minus 14 MB left in the previously allocated 2 GB extent. This
space is also simply rearranged into smaller extents of 16, 32, 64, 128 MB and so on, until
the "unused half" of the original extent, 1 GB, is reached. All these extents are added to the
free extent list and can subsequently be used for new files or for growing existing files.

VxFS actually manages by far the best trade-off between allocation size and amount of
storage space wasted. It does not waste more than one KB per file, and at the same time, a
single allocation unit can still be (currently) one TB in size. And if you used the appropriate
tools provided by Veritas for this purpose, you could even pre-allocate one TB of contigu-
ous space for your (data base) file and end up with just this one single extent descriptor in
the inode, for a file of one TB!

We have prepared two little examples for you. The first example shows the relative
outcomes for UFS versus VxFS on newly created file systems. In these cases, VxFS seems
to have an advantage only on small volumes, while it seems to allocate much more space
than UFS does on larger volumes. But the second example proves the opposite is right, and
VxFS is actually much more efficient in handling space; it just doesn't show it as long as the
file system is nearly empty. So let's look at the first example. We have prepared a number
of volumes of various sizes and put a UFS on them, then we took the same volumes and
put a VxFS on them. We ran df -h on both sets and will look at the results. First, the UFS
file systems:
Filesystem size used avail capacity Mounted on
/dev/vx/dsk/adg/100mvol 93M 1.0M 83M 2% /ufs100m
/dev/vx/dsk/adg/1gvol 961M 1.0M 903M 1% /ufs1g
/dev/vx/dsk/adg/10gvol 9.8G 10M 9.7G 1% /ufs10g
/dev/vx/dsk/adg/50gvol 49G 50M 49G 1% /ufs50g
/dev/vx/dsk/adg/500gvol 492G 64M 487G 1% /ufs500g

Compare this to the VxFS file systems:

Filesystem size used avail capacity Mounted on
/dev/vx/dsk/adg/100mvol 100M 2.1M 92M 3% /vxfs100m
/dev/vx/dsk/adg/1gvol 1.0G 17M 944M 2% /vxfs1g
/dev/vx/dsk/adg/10gvol 10G 20M 9.4G 1% /vxfs10g
/dev/vx/dsk/adg/50gvol 50G 78M 47G 1% /vxfs50g
/dev/vx/dsk/adg/500gvol 500G 191M 469G 1% /vxfs500g

The first thing that jumps at you is that you see the actual volume size (e.g. 100 MB
for the first volume) displayed in the file system size column. But that is just for VxFS! UFS
shows a volume size of a mere 93 MB. And now look at the avail column. UFS shows just
83 MB versus VxFS showing 92 MB. So we have three questions to answer:

1.	 Why does UFS not show the full size of the volume, while VxFS does?

438

File Systems

2.	 What took the additional 10 MB away from the UFS?

3.	 What took the 8 MB away from the VxFS?
The answer to question 1. is rather interesting: UFS dedicates a well defined set of

blocks per file system to metadata such as inodes, bitmaps etc. That metadata is located at
fixed locations in the file system and cannot be relocated. It takes up a significant portion
of the volume and is not available for user data, only for meta data. In the given case, it
is 7% of the total volume size, which reduces the available size to 93 MB out of 100 MB
volume size (that ratio improves with increasing volume size as you can see from the 500
GB volume: 492 GB is the reported size, so 8 GB are wasted – a mere 1.5% instead of 7%).
The ratio of meta data to user data can be tuned by manually supplying the appropriate
parameters to mkfs when making the file system (e.g. mkfs -o nbpi=4096 … ->.4 KB of user
data are expected per inode instead of the default 2 KB).

The answer to question 2. is probably well-known: UFS reserves some amount of the
space (10% for small volumes, less for large volumes) for the root user. The default is ((64
MBytes/volume size)*100), rounded down to the nearest integer and limited between 1%
and 10%, inclusively. This space can not be allocated by other users. This reservation is
intended to prevent a non-priviledged user from filling up the / or /var file system, which
might render the system unusable. Because UFS reserves some space for the root user only,
the super-user could then still log in and clean up; there is still some working space left
over for him in the / or /var file system. So this space is not really lost, it is merely reserved
and can only be used by root. It could also be tuned to a minimum by manual intervention
or by supplying the appropriate parameters to newfs or mkfs when making the file system
(e.g. mkfs -o free=99 … -> only one percent is reserved).

The answer to question 3 is more interesting: VxFS writes the free extent records into
a relatively large area called an extent_map. This extent_map is actually a file that is not
visible to the user (except by using the ncheck utility – see the chapter about Point-In-
Time Copies to learn more about ncheck for VxFS). It is a meta-data file. Now why does the
extent_map take up 8 MB? This sounds like a lot! What VxFS seems to be doing is create
all whole lot of, maybe even all, permutations of the free extents. For instance, if you had
a file system with 16 MB free, you could create just one free extent record for that space.
But you could also create two eight MB ones, or four four MB ones, or one eight and two
four MB ones and so on until you have enough extents of every conceivable size ready
to allocate as soon as one is requested. It goes without saying that this size grows more
quickly than linear with growing volume size, because twice as much free space can be
recombined in many more than two times the number of ways.

That is just one reason why the ratio of available space to volume size improves for
UFS relative to VxFS with increasing volume size. For instance, the 500 GB UFS file system
seems to have much more space available (487 GB) than the VxFS one (469 GB). But you
will see that, as the file system fills up, the amount of blocks used for the extent_map
decreases rapidly, until the extent map finally takes up almost no space at all when the
volume is completely full. You will see, as a result, that a VxFS can still be filled to exactly
the size of the volume (500 GB) minus the amount of used space (191 MB), while UFS can
only be filled to the reported size (492 GB), so in the given example it wastes 8192 MB,
while VxFS's overhead is just 191 MB!

The other reason why the df report for VxFS shows much less space available than one
would derive from subtracting the used value from the size value is that VxFS pre-allocates
lots of inodes when the file system is created. Each inode takes up 256 bytes (by default; it

439

Extent Based File Systems

can be tuned to 512 bytes but there is no good reason to do so). These pre-allocated inodes
are hidden from the usage because they are not really active. On the other hand, they are
subtracted from the size in the output of the available column because that is a more
realistic value in case you fill the file system with small files. The difference between UFS
and VxFS here lies in the fact that UFS cannot claim the inodes back, while VxFS can. UFS
therefore wastes lots of space for inodes that may never get used, while VxFS keeps all this
dynamic and allocates only the amount of storage for meta data that it actually needs.

The second example will prove that. We have created a 1 GB volume for UFS and a 1 GB
volume for VxFS. We will mount the two file systems and then fill them with data. The UFS
will be filled by the non-priviledged user luser until the file system reports an overflow.
Then, the root user will fill up the rest. We will then do the same for VxFS.
newfs /dev/vx/rdsk/adg/1gvol
newfs: construct a new file system /dev/vx/rdsk/adg/1gvol: (y/n)? y
[...UFS file system is created...]
mount /dev/vx/dsk/adg/1gvol /ufs1g
df -h /ufs1g
Filesystem size used avail capacity Mounted on
/dev/vx/dsk/adg/1gvol 961M 1.0M 903M 1% /ufs1g

File system has been created and mounted, 961 MB are free for data, 903 MB of which
is free for non-priviledged users. UFS has wasted 39 MB on meta-data at fixed locations.
We will now switch to the luser account and fill up as much of the file system as we
can.

su - luser
luser $ dd if=/dev/zero of=/ufs1g/USERDATA bs=1024k
dd: unexpected short write, wrote 344064 bytes, expected 1048576
903+0 records in
903+0 records out
luser $ exit
df -h /ufs1g
Filesystem size used avail capacity Mounted on
/dev/vx/dsk/adg/1gvol 961M 904M 0K 100% /ufs1g

The luser could only write 903 MB plus 344064 bytes (see error message form dd).

dd if=/dev/zero of=/ufs1g/ROOTDATA bs=1024k
dd: unexpected short write, wrote 663552 bytes, expected 1048576
58+0 records in
58+0 records out
df -h /ufs1g
Filesystem size used avail capacity Mounted on
/dev/vx/dsk/adg/1gvol 961M 961M 0K 100% /ufs1g

Another 58 MB plus 663552 bytes could be used by root.

umount /ufs1g

440

File Systems

mkfs -F vxfs /dev/vx/rdsk/adg/1gvol
[...VxFS file system is created...]
mount -Fvxfs /dev/vx/dsk/adg/1gvol /vxfs1g
df -h /vxfs1g
Filesystem size used avail capacity Mounted on
/dev/vx/dsk/adg/1gvol 1.0G 17M 944M 2% /vxfs1g
su - luser
luser $ dd if=/dev/zero of=/vxfs1g/USERDATA bs=1024k
dd: unexpected short write, wrote 691200 bytes, expected 1048576
1007+0 records in
1007+0 records out
luser $ exit
df -h /vxfs1g
Filesystem size used avail capacity Mounted on
/dev/vx/dsk/adg/1gvol 1.0G 1.0G 0K 100% /vxfs1g

In the case where a VxFS is sitting on top of the volume, the luser can fill the volume
up with 1007 MB plus 691200 bytes of data – much more than even root was able to
in the case of UFS! Exactly the 17 MB that were reported used by the VxFS could not be
allocated, every byte of the rest could. But how did we get from 944 MB available space
up to 1007 MB? The trick is that, while we are filling up the volume, we are allocating free
extents by the thousands. VxFS is allocating them from the extent_map file, which takes
up a lot of space in an empty file system, as we explained in the first example. The meta
data for all permutations of these free extents are of course invalid once we have allocated
the space that they point to, so these entries are then freed, which makes the extent_map
considerable shorter. It turns out that the more the file system fills up the more meta data
is freed from the extent_map, and thus the more free space becomes available for user
data. Clever idea, is it not?

Now the question that any critical UNIX administrator must ask is: Why does VxFS not
reserve any space for the root user? Is that not dangerous?

The answer is: No! If it were dangerous, don't you think the appropriate mechanism
would have been implemented in VxFS. The explanation is that VxFS (on Solaris, at least),
can not be used for any of the boot file systems, like /, /var, /usr, or /opt. And because it
cannot be used for any of these file systems, there is no danger that a luser fills up the
"VxFS root-FS" and the system gets stuck. There is simply no possibility to create something
like a "VxFS root-FS".

But the smaller amount of meta data compared to UFS is not the primary advantage. It
is just "yet another nice thing" about VxFS. The really nice things that are enabled by using
extents instead of blocks (thereby limiting the complexity of handling contiguous alloca-
tion and reducing the amount of metadata) are discussed in the following section.

441

Advanced File System Operations

Advanced File System Operations12.3	

On-the-Fly File System Optimization
Yes, you can optimize a VxFS just like you could optimize old FAT file systems (which needed
it a lot more, due to its very poor allocation algorithms). The difference is that you can do
so while the file system is active and undergoing user I/O. It is actually a very good idea to
optimize your file systems (especially database table space files) daily, e.g. just before you
start backing them up. The utility is the same fsadm that we used above to check the free
extent list: fsadm. This time, the parameter is not -E, but -e. While -E simply outputs the
report about extents and about possible extent optimization, -e actually causes the fsadm
command to execute the optimization. If the file system had been in use for a long time
and especially if it had run almost full for some time, you may see a significant advantage
in file system performance after optimization compared to before. Here is an example of
the (very simple) syntax

fsadm -e /vxfs_mnt

There is also an optimization feature for the directories. During directory optimiza-
tion, the most recently used files are moved to the beginning of the directory, some empty
directory slots are created to speed up file creation, and small directories will be moved
into their inode in order to save disk seeks. Several other directory optimizations are per-
formed but due to extensive operating system caching strategies as well as the fact that
enterprise-critical applications typically store their data in databases instead of flat file
systems, these may not dramatically improve your performance. For completeness (and
because directory optimization certainly does not hurt) we give you the necessary options
for directory optimizations: They are -D for the report and -d for the actual optimization.

If you wonder if it is a good idea to do extent and directory optimization on the
most critical file systems on a routine basis then the easy answer is: yes! Do it daily, just
before you back up the file system, for example. If you do it routinely, there will be very
little to optimize every day, and so the command will not take a long time to run. If you
want a number: one minute per 20 GB-30 GB of file system data is a good average value
for file system optimization (extents and directories) using a typical file system on 2008
hardware.

Sample command to optimize extents and directories:

fsadm -de /vxfs_mnt

Storage Checkpoints
Being able to remember the file system state at a particular point in time (see also the
chapter about point-in-time copies) is a very nice thing, especially if the overhead in terms
of storage space, processing time, and I/O latency is minimal. The VxFS file system provides
a point-in-time scheme that satisfies all of these needs, as well as supplying the point-in-

442

File Systems

time copies as read-write full file systems which can be used recursively to create a whole
tree of point-in-time copies. These point-in-time copies are called storage checkpoints.
Being a feature of VxFS rather than VxVM, they have nothing whatsoever to do with the
underlying volume or partition, i.e. you can use storage checkpoint on a partition as well
as a SunVM metadevice or a VxVM volume. The only prerequisite is that the file system is
of type VxFS, because only the VxFS driver knows how to handle them.

All of the storage checkpoints of a file system can be active at the same time, can be
read from and written to, and can again be used as the basis of more point-in-time copies.
It does much of what a source code control system is destined to do: keeping track of dif-
ferent instances of data that derive from the same ancestor. And like a source code control
system, you can even consolidate your file system to a preferred instance, for instance if
you want to reduce complexity or free storage space. Other features that are available with
storage checkpoints are the ability to automatically discard them if the volume (or parti-
tion) fills up and many other things which are more rarely used. All of this can be done on
the fly, provided the main (or original) file system is mounted.

In order to reduce redundancy we would like to point you to their in-depth description
in the Point-In-Time-Copies chapter beginning on page 282.

File System Conversion from UFS
Using the relatively simple command vxfsconvert the user is able to convert a UFS file
system into a VxFS file system. The process takes about as long as an fsck run and it is not
harmful if the system crashes or faults in the meantime, i.e. the whole process is transac-
tional. What vxfsconvert does is read the UFS meta data (much like fsck does), gather
them, allocate new VxFS meta data, and write that new meta data into free blocks of the
UFS file system. When the whole file system has been processed and all VxFS meta data
has been written into blocks that UFS considers free, the user is asked whether to com-
mit the transaction. If the reply is positive, the vxfsconvert command then writes a new
superblock onto the file system. This superblock points to the VxFS meta data rather than
the UFS meta data. From the VxFS meta data point of view, the same files are referenced
as were references from the UFS file system. Those blocks that contained UFS meta data,
allocated or not, are marked free in the VxFS meta data, so they can be overwritten when
the file system is mounted read-write.

Before the file system can be mounted, you must first do a full fsck on the new VxFS
file system, i.e. fsck -F vxfs -o full $RAWDEVICE. This is because VxFS is a rather com-
plicated file system and the vxfsconvert command does not need to duplicate things that
fsck_vxfs implements anyway. We therefore pass the rest of the work to fsck_vxfs, which
cleans up the file system for us. It does complain a lot, but all the complaints can be safely
ignored. It is advisable to specify the -y flag to fsck to have fsck run continuously rather
than stopping to ask for every file.

Here is a full run of converting a UFS on Solaris 10 into VxFS. The file system is almost
completely full with data from a previous benchmark run:
ls -l /ufs100m
total 48
drwxr-xr-x 18 root root 512 Aug 23 19:38 0
drwxr-xr-x 18 root root 512 Aug 23 19:38 1
drwxr-xr-x 18 root root 512 Aug 23 19:40 10

443

Advanced File System Operations

drwxr-xr-x 18 root root 512 Aug 23 19:41 11
drwxr-xr-x 18 root root 512 Aug 23 19:41 12
drwxr-xr-x 18 root root 512 Aug 23 19:41 13
drwxr-xr-x 18 root root 512 Aug 23 19:41 14
drwxr-xr-x 18 root root 512 Aug 23 19:42 15
drwxr-xr-x 18 root root 512 Aug 23 19:38 2
drwxr-xr-x 18 root root 512 Aug 23 19:38 3
drwxr-xr-x 18 root root 512 Aug 23 19:39 4
drwxr-xr-x 18 root root 512 Aug 23 19:39 5
drwxr-xr-x 18 root root 512 Aug 23 19:39 6
drwxr-xr-x 18 root root 512 Aug 23 19:40 7
drwxr-xr-x 18 root root 512 Aug 23 19:40 8
drwxr-xr-x 18 root root 512 Aug 23 19:40 9
drwx------ 2 root root 8192 Aug 23 19:29 lost+found

Because the file system is full we need a little more space for the conversion. It is
sometimes tricky to add a whole lot to a file system in one go. If it does not work, split it
into several increments. The increments may get larger very quickly. Note that growing in
increments is only necessary with file systems that have almost no free space left!

vxresize ufs100mvol +1m
vxresize ufs100mvol +4m
vxresize ufs100mvol +25m
umount /ufs100m

Here we actually convert the UFS file system to a VxFS one. We'll measure the time it
takes. Remember there are about 50.000 files in the file system, plus the machine is cur-
rently heavily loaded.

time vxfsconvert /dev/vx/rdsk/adg/ufs100mvol
UX:vxfs vxfsconvert: INFO: V-3-21842: Do you wish to commit to conversion? (ynq)
y

If we reply "n" then nothing happens. The superblock is not updated, and we can mount
the UFS again. But we chose "y", so the superblock is updated.

UX:vxfs vxfsconvert: INFO: V-3-21852: CONVERSION WAS SUCCESSFUL

real 1m15.96s
user 0m2.86s
sys 0m1.22s

Now we need the VxFS-savvy fsck program to clean up behind our conversion:

fsck -F vxfs -y -o full /dev/vx/rdsk/adg/ufs100mvol
super-block indicates that intent logging was disabled
cannot perform log replay

444

File Systems

pass0 - checking structural files
pass1 - checking inode sanity and blocks
pass2 - checking directory linkage
pass3 - checking reference counts
pass4 - checking resource maps
fileset 1 au 0 imap incorrect - fix (ynq)y
fileset 1 au 0 iemap incorrect - fix (ynq)y
fileset 999 au 0 imap incorrect - fix (ynq)y
fileset 999 au 0 iemap incorrect - fix (ynq)y
[…]
fileset 999 au 5 iemap incorrect - fix (ynq)y
fileset 999 au 6 imap incorrect - fix (ynq)y
fileset 999 au 6 iemap incorrect - fix (ynq)y
no CUT entry for fileset 1, fix? (ynq)y
no CUT entry for fileset 999, fix? (ynq)y
au 0 emap incorrect - fix? (ynq)y
au 0 summary incorrect - fix? (ynq)y
au 0 state file incorrect - fix? (ynq)y
au 1 emap incorrect - fix? (ynq)y
[…]
au 3 summary incorrect - fix? (ynq)y
au 4 state file incorrect - fix? (ynq)y
au 4 emap incorrect - fix? (ynq)y
au 4 summary incorrect - fix? (ynq)y
au 4 state file incorrect - fix? (ynq)y
fileset 1 iau 0 summary incorrect - fix? (ynq)y
fileset 999 iau 0 summary incorrect - fix? (ynq)y
[…]
fileset 999 iau 5 summary incorrect - fix? (ynq)y
free block count incorrect 0 expected 30955 fix? (ynq)y
free extent vector incorrect fix? (ynq)y
OK to clear log? (ynq)y
flush fileset headers? (ynq)y
set state to CLEAN? (ynq)y

Once the file system has been checked we can now mount it
using mount -F vxfs …:
mount -F vxfs /dev/vx/dsk/adg/ufs100mvol /mnt
df -h /mnt
/dev/vx/dsk/adg/ufs100mvol 130M 100M 30M 77% /mnt

As you can see we now have a 130 MB volume which is filled with 100 MB (hey, we
told you it was full, didn't we? That's why we added another 30 MB before the conversion).
The remaining 30 MB are free for user data (unlike UFS, which would have taken a large
bite out of that for its own statically allocated meta data(..

Suggested reading: If you want to know more about file systems, and especially clus-

445

Advanced File System Operations

tered file systems, "Shared Data Clusters" by Dilip M. Ranade (lead technical engineer for
Veritas cluster file systems) is a great book.

Summary12.3.1	
This chapter gave an introduction into file systems based on an overview of the develop-
ment of file systems and especially their allocation mechanisms. It shows that the use of
extent-based allocation is superior to block-based allocation because of the smaller over-
head per block, less compute-intensive algorithms and more direct access to the resulting
disk blocks for any I/O. Also, VxFS uses the available space almost ideally, unlike UFS, which
always allocates fixed amounts of metadata for some assumed worst case scenarios (like
having very few, very large files, or having very many very little files). VxFS allocates its
metadata dynamically and is therefore much more flexible and space-efficient.

Some of the features of VxFS were outlined, especially growing and shrinking file
systems online, optimizing existing file systems, and using storage checkpoints. Both rely
heavily on extent-based allocation and especially storage checkpoints would be very hard
to implement efficiently with any block-based allocation scheme.

